RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2010 Volume 164, Number 1, Pages 28–45 (Mi tmf6522)

This article is cited in 1 paper

Quantum $s\ell(2)$ action on a divided-power quantum plane at even roots of unity

A. M. Semikhatov

Lebedev Physical Institute, RAS, Moscow, Russia

Abstract: We describe a nonstandard version of the quantum plane in which the basis is given by divided powers at an even root of unity $\mathfrak q=e^{i\pi/p}$. It can be regarded as an extension of the "nearly commutative" algebra $\mathbb C[X,Y]$ with $XY=(-1)^pYX$ by nilpotents. For this quantum plane, we construct a Wess–Zumino-type de Rham complex and find its decomposition into representations of the $2p^3$-dimensional quantum group $\overline{\mathcal U}_{\mathfrak q}s\ell(2)$ and its Lusztig extension $\boldsymbol{\mathcal U}_{\mathfrak q}s\ell(2)$; we also define the quantum group action on the algebra of quantum differential operators on the quantum plane.

Keywords: quantum plane, divided power, Lusztig quantum group, indecomposable representation.

Received: 07.09.2009
Revised: 24.12.2009

DOI: 10.4213/tmf6522


 English version:
Theoretical and Mathematical Physics, 2010, 164:1, 853–868

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024