RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2010 Volume 164, Number 1, Pages 119–140 (Mi tmf6528)

The ring of physical states in the $M(2,3)$ minimal Liouville gravity

O. V. Alekseeva, M. A. Bershteinab

a Landau Institute for Theoretical Physics, RAS, Chernogolovka, Moscow Oblast, Russia
b Independent University of Moscow, Moscow, Russia

Abstract: We consider the $M(2,3)$ minimal Liouville gravity, whose state space in the gravity sector is realized as irreducible modules of the Virasoro algebra. We present a recursive construction for BRST cohomology classes based on using an explicit form of singular vectors in irreducible modules of the Virasoro algebra. We find a certain algebra acting on the BRST cohomology space and use this algebra to find the operator algebra of physical states.

Keywords: conformal field theory, Liouville gravity, BRST cohomology.

Received: 22.01.2010

DOI: 10.4213/tmf6528


 English version:
Theoretical and Mathematical Physics, 2010, 164:1, 929–946

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024