RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2010 Volume 164, Number 1, Pages 157–171 (Mi tmf6530)

This article is cited in 11 papers

Wave function and the probability current distribution for a bound electron moving in a uniform magnetic field

V. N. Rodionova, G. A. Kravtsovab, A. M. Mandel'c

a Russian State Geological Prospecting University, Moscow, Russia
b Lomonosov Moscow State University, Moscow, Russia
c Moscow Aviation Institute (State Technical University), Moscow, Russia

Abstract: We study the effects of electromagnetic fields on nonrelativistic charged spinning particles bound by a short-range potential. We analyze the exact solution of the Pauli equation for an electron moving in the potential field determined by the three-dimensional $\delta$-well in the presence of a strong magnetic field. We obtain asymptotic expressions for this solution for different values of the problem parameters. In addition, we consider electron probability currents and their dependence on the magnetic field. We show that including the spin in the framework of the nonrelativistic approach allows correctly taking the effect of the magnetic field on the electric current into account. The obtained dependences of the current distribution, which is an experimentally observable quantity, can be manifested directly in scattering processes, for example.

Keywords: bound electron, magnetic field, current probability distribution.

Received: 18.11.2009

DOI: 10.4213/tmf6530


 English version:
Theoretical and Mathematical Physics, 2010, 164:1, 960–971

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025