Abstract:
We study the effects of electromagnetic fields on nonrelativistic charged spinning particles bound by a short-range potential. We analyze the exact solution of the Pauli equation for an electron moving in the potential field determined by the three-dimensional $\delta$-well in the presence of a strong magnetic field. We obtain asymptotic expressions for this solution for different values of the problem parameters. In addition, we consider electron probability currents and their dependence on the magnetic field. We show that including the spin in the framework of the nonrelativistic approach allows correctly taking the effect of the magnetic field on the electric current into account. The obtained dependences of the current distribution, which is an experimentally observable quantity, can be manifested directly in scattering processes, for example.
Keywords:bound electron, magnetic field, current probability distribution.