RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2011 Volume 168, Number 1, Pages 35–48 (Mi tmf6662)

This article is cited in 44 papers

Exact solutions of the modified Korteweg–de Vries equation

F. Demontis

Dipartimento Matematica, Università di Cagliari, Cagliari, Italy

Abstract: We use the inverse scattering method to obtain a formula for certain exact solutions of the modified Korteweg–de Vries (mKdV) equation. Using matrix exponentials, we write the kernel of the relevant Marchenko integral equation as $\Omega(x+y;t)=Ce^{-(x+y)A}e^{8A^3 t}B$, where the real matrix triplet $(A,B,C)$ consists of a constant $p{\times}p$ matrix $A$ with eigenvalues having positive real parts, a constant $p\times1$ matrix $B$, and a constant $1\times p$ matrix $C$ for a positive integer $p$. Using separation of variables, we explicitly solve the Marchenko integral equation, yielding exact solutions of the mKdV equation. These solutions are constructed in terms of the unique solution $P$ of the Sylvester equation $AP+PA=BC$ or in terms of the unique solutions $Q$ and $N$ of the Lyapunov equations $A^\dag Q+QA=C^\dag C$ and $AN+NA^\dag=BB^\dag$, where $B^\dag$ denotes the conjugate transposed matrix. We consider two interesting examples.

Keywords: inverse scattering method, Lyapunov equation, explicit solution of the modified Korteweg–de Vries equation.

DOI: 10.4213/tmf6662


 English version:
Theoretical and Mathematical Physics, 2011, 168:1, 886–897

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024