RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2011 Volume 169, Number 1, Pages 100–111 (Mi tmf6712)

This article is cited in 17 papers

Renormalization group and the $\varepsilon$-expansion: Representation of the $\beta$-function and anomalous dimensions by nonsingular integrals

L. Ts. Adzhemyan, M. V. Kompaniets

Saint Petersburg State University, St.~Petersburg, Russia

Abstract: In the framework of the renormalization group and the $\varepsilon$-expansion, we propose expressions for the $\beta$-function and anomalous dimensions in terms of renormalized one-irreducible functions. These expressions are convenient for numerical calculations. We choose the renormalization scheme in which the quantities calculated using $R$ operations are represented by integrals that do not contain singularities in $\varepsilon$. We develop a completely automated calculation system starting from constructing diagrams, determining relevant subgraphs, combinatorial coefficients, etc., up to determining critical exponents. As an example, we calculate the critical exponents of the $\varphi^3$ model in the order $\varepsilon^4$.

Keywords: renormalization group, $\varepsilon$-expansion, multiloop diagrams, critical exponents.

Received: 20.10.2011

DOI: 10.4213/tmf6712


 English version:
Theoretical and Mathematical Physics, 2011, 169:1, 1450–1459

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024