RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2011 Volume 169, Number 2, Pages 229–240 (Mi tmf6724)

This article is cited in 4 papers

$N$-symmetric Chebyshev polynomials in a composite model of a generalized oscillator

V. V. Borzova, E. V. Damaskinskyb

a Saint-Petersburg State University of Telecommunications, St. Petersburg, Russia
b Saint Petersburg Military Engineering-Technical University, St. Petersburg, Russia

Abstract: We continue to study a composite model of a generalized oscillator generated by an $N$-periodic Jacobi matrix. The foundation of the model is a system of orthogonal polynomials connected to this matrix for $N=3,4,5$. We show that such polynomials do not exist for $N\ge6$.

Keywords: generalized oscillator, Chebyshev polynomial, classical moment problem.

Received: 19.11.2011

DOI: 10.4213/tmf6724


 English version:
Theoretical and Mathematical Physics, 2011, 169:2, 1561–1572

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025