RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2012 Volume 171, Number 3, Pages 370–386 (Mi tmf6899)

This article is cited in 1 paper

The Schlesinger system and isomonodromic deformations of bundles with connections on Riemann surfaces

D. V. Artamonov

M. V. Lomonosov Moscow State University, Moscow, Russia

Abstract: We introduce a way to represent pairs $(E,\nabla)$, where $E$ is a bundle on a Riemann surface and $\nabla$ is a logarithmic connection in $E$, based on a representation of the surface as the quotient of the exterior of the unit disc. In this representation, we write the local isomonodromic deformation conditions for the pairs $(E,\nabla)$. These conditions are written as a modified Schlesinger system on a Riemann sphere (reduced to the ordinary Schlesinger system in the typical case) supplemented by a certain system of linear equations.

Keywords: isomonodromic deformation, Riemann surface, Schlesinger system.

Received: 20.04.2011
Revised: 18.08.2011

DOI: 10.4213/tmf6899


 English version:
Theoretical and Mathematical Physics, 2012, 171:3, 739–753

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024