RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2012 Volume 171, Number 2, Pages 303–311 (Mi tmf6905)

This article is cited in 2 papers

An $\hbar$-dependent formulation of the Kadomtsev–Petviashvili hierarchy

K. Takasakia, T. Takebeb

a Graduate School of Human and Environmental Studies, Kyoto University, Yoshida, Sakyo, Kyoto, Japan
b Faculty of Mathematics, Higher School of Economics, Moscow, Russia

Abstract: We briefly review a recursive construction of $\hbar$-dependent solutions of the Kadomtsev–Petviashvili hierarchy. We give recurrence relations for the coefficients $X_n$ of an $\hbar$-expansion of the operator $X=X_0+\hbar X_1+\hbar^2X_2+\cdots$ for which the dressing operator $W$ is expressed in the exponential form $W=e^{X/\hbar}$. The wave function $\Psi$ associated with $W$ turns out to have the WKB {(}Wentzel–Kramers–Brillouin{\rm)} form $\Psi=e^{S/\hbar}$, and the coefficients $S_n$ of the $\hbar$-expansion $S=S_0+\hbar S_1+\hbar^2S_2+\cdots$ are also determined by a set of recurrence relations. We use this WKB form to show that the associated tau function has an $\hbar$-expansion of the form $\ln\tau=\hbar^{-2}F_0+ \hbar^{-1}F_1+F_2+\dots$.

Keywords: $\hbar$-expansion, Riemann–Hilbert problem, quantization, recurrence relation.

Received: 30.04.2011

DOI: 10.4213/tmf6905


 English version:
Theoretical and Mathematical Physics, 2012, 171:2, 683–690

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025