RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2012 Volume 171, Number 1, Pages 26–32 (Mi tmf6912)

This article is cited in 15 papers

Bi-Hamiltonian ordinary differential equations with matrix variables

A. V. Odesskiia, V. N. Rubtsovbc, V. V. Sokolovd

a Brock University, St. Catharines, Canada
b Institute for Theoretical and Experimental Physics, Moscow, Russia
c LAREMA, CNRS, Université d'Angers, Angers, France
d Landau Institute for Theoretical Physics, RAS, Moscow, Russia

Abstract: We consider a special class of Poisson brackets related to systems of ordinary differential equations with matrix variables. We investigate general properties of such brackets, present an example of a compatible pair of quadratic and linear brackets, and find the corresponding hierarchy of integrable models, which generalizes the two-component Manakov matrix system to the case of an arbitrary number of matrices.

Keywords: integrable ordinary differential equation with matrix unknowns, bi-Hamiltonian formalism, Manakov model.

Received: 07.05.2011

DOI: 10.4213/tmf6912


 English version:
Theoretical and Mathematical Physics, 2012, 171:1, 442–447

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024