RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2012 Volume 171, Number 1, Pages 96–115 (Mi tmf6915)

This article is cited in 27 papers

Resolvents and Seiberg–Witten representation for a Gaussian $\beta$-ensemble

A. D. Mironovab, A. Yu. Morozovb, A. V. Popolitovb, Sh. R. Shakirovbc

a Lebedev Physical Institute, RAS, Moscow, Russia
b Institute for Theoretical and Experimental Physics, Moscow, Russia
c Department of Mathematics, University of California, Berkeley, CA, USA

Abstract: The exact free energy of a matrix model always satisfies the Seiberg–Witten equations on a complex curve defined by singularities of the semiclassical resolvent. The role of the Seiberg–Witten differential is played by the exact one-point resolvent in this case. We show that these properties are preserved in the generalization of matrix models to $\beta$-ensembles. But because the integrability and Harer–Zagier topological recursion are still unavailable for $\beta$-ensembles, we must rely on the ordinary Alexandrov–Mironov–Morozov/Eynard–Orantin recursion to evaluate the first terms of the genus expansion. We restrict our consideration to the Gaussian model.

Keywords: matrix model, $\beta$-ensemble, integrability, Seiberg–Witten theory.

Received: 17.05.2011

DOI: 10.4213/tmf6915


 English version:
Theoretical and Mathematical Physics, 2012, 171:1, 505–522

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024