RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2012 Volume 172, Number 1, Pages 122–137 (Mi tmf6936)

This article is cited in 16 papers

Rate of convergence of Feynman approximations of semigroups generated by the oscillator Hamiltonian

Yu. N. Orlova, V. Zh. Sakbaevb, O. G. Smolyanovc

a Keldysh Institute of Applied Mathematics, RAS, Moscow, Russia
b Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Oblast, Russia
c Lomonosov Moscow State University, Moscow, Russia

Abstract: We determine the rate with which finitely multiple approximations in the Feynman formula converge to the exact expression for the equilibrium density operator of a harmonic oscillator in the linear $\tau$-quantization. We obtain an explicit analytic expression for a finitely multiple approximation of the equilibrium density operator and the related Wigner function. We show that in the class of $\tau$-quantizations, the equilibrium Wigner function of a harmonic oscillator is positive definite only in the case of the Weyl quantization.

Keywords: finitely multiple approximation, Feynman formula, Chernoff theorem, linear quantization, harmonic oscillator, Wigner function.

Received: 09.08.2011

DOI: 10.4213/tmf6936


 English version:
Theoretical and Mathematical Physics, 2012, 172:1, 987–1000

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025