RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 1999 Volume 118, Number 3, Pages 441–451 (Mi tmf717)

This article is cited in 25 papers

Geometry and multidimensional soliton equations

R. Myrzakulov, A. K. Danlybaeva, G. N. Nugmanova

Institute of Physics and Technology, Ministry of Education and Science of the Republic of Kazakhstan

Abstract: The connection between the differential geometry of curves and $(2+1)$-dimensional integrable systems is established. The Zakharov equation, the modified Veselov–Novikov equation, the modified Korteweg–de Vries equation, etc., are equivalent in the Lakshmanan sense to $(2+1)$-dimensional spin systems.

DOI: 10.4213/tmf717


 English version:
Theoretical and Mathematical Physics, 1999, 118:3, 347–356

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024