RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 1999 Volume 120, Number 2, Pages 309–314 (Mi tmf777)

This article is cited in 30 papers

Renormalization group, operator expansion, and anomalous scaling in a simple model of turbulent diffusion

L. Ts. Adzhemyan, N. V. Antonov, A. N. Vasil'ev

Saint-Petersburg State University

Abstract: Using the renormalization group method and the operator expansion in the Obukhov–Kraichnan model that describes the intermixing of a passive scalar admixture by a random Gaussian field of velocities with the correlator $\langle\mathbf v(t,\mathbf x)\mathbf v(t',\mathbf x)\rangle- \langle\mathbf v(t,\mathbf x)\mathbf v(t',\mathbf x')\rangle\propto\delta(t-t')|\mathbf x-\mathbf x'|^{\varepsilon}$, we prove that the anomalous scaling in the inertial interval is caused by the presence of “dangerous” composite operators (powers of the local dissipation rate) whose negative critical dimensions determine the anomalous exponents. These exponents are calculated up to the second order of the $\varepsilon$ expansion.

Received: 01.12.1997

DOI: 10.4213/tmf777


 English version:
Theoretical and Mathematical Physics, 1999, 120:2, 1074–1078

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024