RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2012 Volume 173, Number 1, Pages 3–37 (Mi tmf8314)

This article is cited in 6 papers

Fusion in the entwined category of Yetter–Drinfeld modules of a rank-1 Nichols algebra

A. M. Semikhatov

Lebedev Physical Institute, RAS, Moscow, Russia

Abstract: In the braided context, we rederive a popular nonsemisimple fusion algebra from a Nichols algebra. Together with the decomposition that we find for the product of simple Yetter–Drinfeld modules, this strongly suggests that the relevant Nichols algebra furnishes an equivalence with the triplet $W$-algebra in the $(p,1)$ logarithmic models of conformal field theory. For this, the category of Yetter–Drinfeld modules is to be regarded as an entwined category (i.e., a category with monodromy but not with braiding).

Keywords: logarithmic conformal field theory, fusion, Nichols algebra, Yetter–Drinfeld module.

Received: 09.11.2011

DOI: 10.4213/tmf8314


 English version:
Theoretical and Mathematical Physics, 2012, 173:1, 1329–1358

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025