RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2012 Volume 173, Number 2, Pages 245–267 (Mi tmf8320)

This article is cited in 8 papers

Solution of the equivalence problem for the Painlevé IV equation

V. V. Kartakab

a Ufa State Aviation Technical University, Ufa, Russia
b Bashkir State University, Ufa, Russia

Abstract: We solve the equivalence problem for the Painlevé IV equation, formulating the necessary and sufficient conditions in terms of the invariants of point transformations for an arbitrary second-order differential equation to be equivalent to the Painlevé IV equation. We separately consider three pairwise nonequivalent cases: both equation parameters are zero, $a=b=0$; only one parameter is zero, $b=0$; and the parameter $b\ne0$. In all cases, we give an explicit point substitution transforming an equation satisfying the described test into the Painlevé IV equation and also give expressions for the equation parameters in terms of invariants.

Keywords: Painlevé equation, point transformation, equivalence problem, invariant.

Received: 29.12.2011
Revised: 13.06.2012

DOI: 10.4213/tmf8320


 English version:
Theoretical and Mathematical Physics, 2012, 173:2, 1541–1564

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024