RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2012 Volume 173, Number 1, Pages 127–134 (Mi tmf8324)

This article is cited in 3 papers

Perturbation of a periodic operator by a narrow potential

R. R. Gadyl'shin, I. Kh. Khusnullin

Akmulla Bashkir State Pedagogical University, Ufa, Russia

Abstract: We consider perturbations of a second-order periodic operator on the line; the Schrödinger operator with a periodic potential is a specific case of such an operator. The perturbation is realized by a potential depending on two small parameters, one of which describes the length of the potential support, and the inverse value of other corresponds to the value of the potential. We obtain sufficient conditions for the perturbing potential to have eigenvalues in the gaps of the continuous spectrum. We also construct their asymptotic expansions and present sufficient conditions for the eigenvalues of the perturbing potential to be absent.

Keywords: periodic operator, perturbation, eigenvalue, asymptotic behavior.

Received: 27.01.2012

DOI: 10.4213/tmf8324


 English version:
Theoretical and Mathematical Physics, 2012, 173:1, 1438–1444

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024