RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2013 Volume 174, Number 3, Pages 484–503 (Mi tmf8378)

This article is cited in 3 papers

Coexistence of superconductivity and antiferromagnetism in heavy-fermion intermetallides

V. V. Val'kovab, A. O. Zlotnikov

a Reshetnev Siberian State Aerospace University, Krasnoyarsk, Russia
b Kirensky Institute of Physics, Siberian Branch, RAS, Krasnoyarsk, Russia

Abstract: Using the two-time retarded Green's function, we study the conditions for realizing the phase of the superconductivity and antiferromagnetism coexistence in the framework of the effective Hamiltonian for the periodic Anderson model. Such a phase was experimentally observed in rare-earth intermetallides with heavy fermions under an external pressure. In the chosen model, the Cooper instability is induced in the presence of long-range antiferromagnetic ordering as a result of the combined effect of a superexchange interaction in the subsystem of localized electrons and the hybridization between two groups of electrons. Applying an external pressure induces an increase in the energy of the localized level accompanied by an abrupt destruction of the long-range antiferromagnetic ordering in a certain region of the phase diagram. The superconductivity order parameter has a maximum value at the destruction point. We show that the decrease in the antiferromagnetic-sublattice magnetization with increasing pressure leads to a significant increase in the masses of Fermi quasiparticles, and the sign of the current carriers reverses at the critical point. The obtained results qualitatively agree well with the experimental data for the heavy-fermion intermetallide CeRhIn$_5$.

Keywords: periodic Anderson model, coexistence of superconductivity and antiferromagnetism, superexchange interaction, heavy fermion.

Received: 09.06.2012

DOI: 10.4213/tmf8378


 English version:
Theoretical and Mathematical Physics, 2013, 174:3, 421–437

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024