RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 1998 Volume 114, Number 3, Pages 349–365 (Mi tmf845)

This article is cited in 46 papers

$p$-Adic dynamic systems

S. A. Albeverioa, B. Tirozzib, A. Yu. Khrennikovc, S. de Smedtd

a University of Bonn, Institute for Applied Mathematics
b University of Rome "La Sapienza"
c Växjö University
d Vrije Universiteit

Abstract: Dynamic systems in non-Archimedean number fields (i. e. fields with non-Archimedean valuations) are studied. Results are obtained for the fields of $p$-adic numbers and complex $p$-adic numbers. Simple $p$-adic dynamic systems have a very rich structure–attractors, Siegel disks, cycles, and a new structure called a “fuzzy cycle”. The prime number $p$ plays the role of a parameter of the $p$-adic dynamic system. Changing $p$ radically changes the behavior of the system: attractors may become the centers of Siegel disks, and vice versa, and cycles of different lengths may appear or disappear.

Received: 28.08.1997

DOI: 10.4213/tmf845


 English version:
Theoretical and Mathematical Physics, 1998, 114:3, 276–287

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024