RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2013 Volume 176, Number 1, Pages 69–78 (Mi tmf8479)

This article is cited in 3 papers

Influence of hydrodynamic fluctuations on the phase transition in the $E$ and $F$ models of critical dynamics

M. Dančoa, M. Gnatichb, M. V. Komarovac, D. M. Krasnovc, T. Lučivjanskýab, L. Mižišinb, M. Yu. Nalimovc

a Institute of Experimental Physics, Slovak Academy of Sciences, Košice, Slovakia
b Faculty of Science, P. J. Šafárik University, Košice, Slovakia
c Saint Petersburg State University, St. Petersburg, Russia

Abstract: We use the renormalization group method to study the $E$ model of critical dynamics in the presence of velocity fluctuations arising in accordance with the stochastic Navier–Stokes equation. Using the Martin–Siggia–Rose theorem, we obtain a field theory model that allows a perturbative renormalization group analysis. By direct power counting and an analysis of ultraviolet divergences, we show that the model is multiplicatively renormalizable, and we use a two-parameter expansion in $\epsilon$ and $\delta$ to calculate the renormalization constants. Here, $\epsilon$ is the deviation from the critical dimension four, and $\delta$ is the deviation from the Kolmogorov regime. We present the results of the one-loop approximation and part of the fixed-point structure. We briefly discuss the possible effect of velocity fluctuations on the large-scale behavior of the model.

Keywords: Bose condensation, $F$ model, renormalization group, anomalous scaling exponent, critical dynamics.

Received: 19.12.2012
Revised: 05.03.2013

DOI: 10.4213/tmf8479


 English version:
Theoretical and Mathematical Physics, 2013, 176:1, 888–897

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024