RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2013 Volume 176, Number 3, Pages 417–428 (Mi tmf8498)

This article is cited in 2 papers

Asymptotic behavior of eigenvalues of the two-particle discrete Schrödinger operator

J. I. Abdullaeva, B. U. Mamirov

a Samarkand State University, Samarkand, Uzbekistan

Abstract: We consider two-particle Schrödinger operator $H(k)$ on a three-dimensional lattice $\mathbb Z^3$ (here $k$ is the total quasimomentum of a two-particle system, $k\in\mathbb{T}^3:=(-\pi,\pi]^3$). We show that for any $k\in S=\mathbb{T}^3\setminus(-\pi,\pi)^3$, there is a potential $\hat v$ such that the two-particle operator $H(k)$ has infinitely many eigenvalues $z_n(k)$ accumulating near the left boundary $m(k)$ of the continuous spectrum. We describe classes of potentials $W(j)$ and $W(ij)$ and manifolds $S(j)\subset S$, $i,j\in\{1,2,3\}$, such that if $k\in S(3)$, $(k_2,k_3)\in(-\pi,\pi)^2$, and $\hat v\in W(3)$, then the operator $H(k)$ has infinitely many eigenvalues $z_n(k)$ with an asymptotic exponential form as $n\to\infty$ and if $k\in S(i)\cap S(j)$ and $\hat v\in W(ij)$, then the eigenvalues $z_{nm}(k)$ of $H(k)$ can be calculated exactly. In both cases, we present the explicit form of the eigenfunctions.

Keywords: Hamiltonian, total quasimomentum, Schrödinger operator, asymptotic behavior, eigenvalue, eigenfunction.

Received: 11.01.2013
Revised: 14.02.2013

DOI: 10.4213/tmf8498


 English version:
Theoretical and Mathematical Physics, 2013, 176:3, 1184–1193

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025