RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2013 Volume 176, Number 2, Pages 163–188 (Mi tmf8512)

This article is cited in 17 papers

Explicit solution family for the equation of the resistively shunted Josephson junction model

V. M. Buchstaberab, S. I. Tertychnyia

a All-Russian Scientific Research Institute of Physical-Technical and Radiotechnical Measurements, Mendeleevo, Moscow Oblast, Russia
b Steklov Mathematical Institute, RAS, Moscow, Russia

Abstract: We obtain and study a family of solutions of the equation $\dot\phi+\sin\phi =B+A\cos\omega t$, which is applicable to several problems in physics, mechanics, and geometry. We use polynomial solutions of double confluent Heun equations associated with this equation to construct the family. We describe the manifold $M_{\mathrm P}$ of parameters $(A,B,\omega)$ of these solutions and obtain explicit formulas for the rotation number and Poincaré map of the dynamical system on a torus corresponding to this equation with parameters $(A,B,\omega)\in M_{\mathrm rP}$.

Keywords: dynamical system on a torus, double confluent Heun equations, polynomial solution, rotation number, Poincaré map.

Received: 06.02.2013

DOI: 10.4213/tmf8512


 English version:
Theoretical and Mathematical Physics, 2013, 176:2, 965–986

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025