RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2014 Volume 178, Number 3, Pages 390–402 (Mi tmf8544)

This article is cited in 4 papers

Positivity of eigenvalues of the two-particle Schrödinger operator on a lattice

S. N. Lakaev, Sh. U. Alladustov

Samarkand State University, Samarkand, Uzbekistan

Abstract: We consider the family $H(k)$ of two-particle discrete Schrödinger operators depending on the quasimomentum of a two-particle system $k\in\mathbb T^d$, where $\mathbb T^d$ is a $d$-dimensional torus. This family of operators is associated with the Hamiltonian of a system of two arbitrary particles on the $d$-dimensional lattice $\mathbb Z^d$, $d\ge3$, interacting via a short-range attractive pair potential. We prove that the eigenvalues of the Schrödinger operator $H(k)$ below the essential spectrum are positive for all nonzero values of the quasimomentum $k\in\mathbb T^d$ if the operator $H(0)$ is nonnegative. We establish a similar result for the eigenvalues of the Schrödinger operator $H_+(k)$, $k\in\mathbb T^d$, corresponding to a two-particle system with repulsive interaction.

Keywords: discrete Schrödinger operator, system quasimomentum, Hamiltonian, repulsive interaction, virtual level, eigenvalue, lattice.

Received: 25.04.2013
Revised: 29.07.2013

DOI: 10.4213/tmf8544


 English version:
Theoretical and Mathematical Physics, 2014, 178:3, 336–346

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025