RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2013 Volume 177, Number 3, Pages 482–496 (Mi tmf8559)

This article is cited in 10 papers

Spectral properties of a two-particle Hamiltonian on a lattice

M. I. Muminov, A. M. Hurramov

Самаркандский государственный университет, Самарканд, Республика Узбекистан

Abstract: We consider a system of two arbitrary quantum particles on a three-dimensional lattice with some dispersion functions (describing particle transport from a site to a neighboring site). The particles interact via an attractive potential at only the nearest-neighbor sites. We study how the number of eigenvalues of a family of operators $h(k)$ depends on the particle interaction energy and the total quasimomentum $k\in\mathbb T^3$, where $\mathbb T^3$ is a three-dimensional torus. We find the conditions under which the operator $h(\mathbf 0)$ has a double or triple virtual level at zero depending on the particle interaction energy.

Keywords: two-particle Hamiltonian on a lattice, virtual level, virtual-level multiplicity, eigenvalue, positive operator.

Received: 31.05.2013
Revised: 13.07.2013

DOI: 10.4213/tmf8559


 English version:
Theoretical and Mathematical Physics, 2013, 177:3, 1693–1705

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024