RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2014 Volume 178, Number 3, Pages 416–432 (Mi tmf8594)

This article is cited in 5 papers

The Kardar–Parisi–Zhang equation and its matrix generalization

L. V. Borkab, S. L. Ogarkovb

a Institute for Theoretical and Experimental Physics, Moscow, Russia
b Dukhov All-Russia~Research Institute of Automatics, Moscow, Russia

Abstract: We study the problem of the condensate (stochastic average) origination for an auxiliary field in the Kardar–Parisi–Zhang equation and its matrix generalization. We cannot reliably conclude that there is a condensate for the Kardar–Parisi–Zhang equation in the framework of the one-loop approximation improved by the renormalization group method. The matrix generalization of the Kardar–Parisi–Zhang equation permits a positive answer to the question of whether there is a nonzero condensate, and the problem can be solved exactly in the large-$N$ limit.

Keywords: Kardar–Parisi–Zhang equation, renormalization group, effective potential, $1/N$-expansion.

PACS: 64.60.Ht

MSC: 82C27,82C28

Received: 10.09.2013
Revised: 23.09.2013

DOI: 10.4213/tmf8594


 English version:
Theoretical and Mathematical Physics, 2014, 178:3, 359–373

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024