RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2014 Volume 180, Number 3, Pages 329–341 (Mi tmf8624)

This article is cited in 6 papers

Multiplicity of virtual levels at the lower edge of the continuous spectrum of a two-particle Hamiltonian on a lattice

M. I. Muminov, A. M. Hurramov

Samarkand State University, Samarkand, Uzbekistan

Abstract: We consider a system of two arbitrary quantum particles on a three-dimensional lattice with special dispersion functions (describing site-to-site particle transport), where the particles interact by a chosen attraction potential. We study how the number of eigenvalues of the family of the operators $h(k)$ depends on the particle interaction energy and the total quasimomentum $k\in\mathbb T^3$ (where $\mathbb T^3$ is a three-dimensional torus). Depending on the particle interaction energy, we obtain conditions under which the left edge of the continuous spectrum is simultaneously a multiple virtual level and an eigenvalue of the operator $h(\mathbf 0)$.

Keywords: two-particle Hamiltonian on a lattice, virtual level, virtual level multiplicity, eigenvalue.

Received: 11.12.2013

DOI: 10.4213/tmf8624


 English version:
Theoretical and Mathematical Physics, 2014, 180:3, 1040–1050

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024