RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2014 Volume 180, Number 2, Pages 245–263 (Mi tmf8653)

This article is cited in 8 papers

Asymptotic solutions of Navier–Stokes equations and topological invariants of vector fields and Liouville foliations

V. P. Maslovab, A. I. Shafarevicha

a M. V. Lomonosov Moscow State University, Moscow, Russia
b National Research University "Higher School of Economics", Moscow, Russia

Abstract: We construct asymptotic solutions of the Navier–Stokes equations. Such solutions describe periodic systems of localized vortices and are related to topological invariants of divergence-free vector fields on two-dimensional cylinders or tori and to the Fomenko invariants of Liouville foliations. The equations describing the evolution of a vortex system are given on a graph that is a set of trajectories of the divergence-free field or a set of Liouville tori.

Keywords: hydrodynamic equation, localized vortex, topology of Liouville foliations.

Received: 13.02.2014

DOI: 10.4213/tmf8653


 English version:
Theoretical and Mathematical Physics, 2014, 180:2, 967–982

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024