RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2016 Volume 189, Number 2, Pages 186–197 (Mi tmf8693)

This article is cited in 1 paper

Finsler generalization of the Tamm metric

V. I. Panzhenskij, O. P. Surina

Penza State University, Penza, Russia

Abstract: We study manifolds of the Finsler type whose tangent $($pseudo-$)$Riemannian spaces are invariant under the $($pseudo$)$orthogonal group. We construct the Cartan connection and study geodesics, extremals, and also motions. We establish that if the metric tensor of the space is a homogeneous tensor of the zeroth order with respect to the coordinates of the tangent vector, then the metric of the tangent space is realized on a cone of revolution. We describe the structure of geodesics on the cone as trajectories of motion of a free particle in a central field.

Keywords: Finsler Tamm space, Cartan connection, motion, geodesic.

Received: 04.04.2014
Revised: 03.12.2015

DOI: 10.4213/tmf8693


 English version:
Theoretical and Mathematical Physics, 2016, 189:2, 1563–1573

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025