RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2015 Volume 183, Number 2, Pages 329–336 (Mi tmf8707)

This article is cited in 4 papers

Planar hydrogen-like atom in inhomogeneous magnetic fields: Exactly or quasi-exactly solvable models

Liyan Liu, Qinghai Hao

College of Science, Civil Aviation University of China, Tianjin, China

Abstract: We use a simple mathematical method to solve the problem of a two-dimensional hydrogen-like atom in the inhomogeneous magnetic fields $\mathbf B=(k/r)\mathbf z$ and $\mathbf B=(k/r^3)\mathbf z$. We construct a Hamiltonian that takes the same form as the Hamiltonian of a hydrogen-like atom in the homogeneous magnetic fields and obtain the energy spectrum by comparing the Hamiltonians. The results show that the whole spectrum of the atom in the magnetic field $\mathbf B=(k/r)\mathbf z$ can be obtained, and the problem is exactly solvable in this case. We find analytic solutions of the Schrödinger equation for the atom in the magnetic field $\mathbf B=(k/r^3)\mathbf z$ for particular values of the magnetic strength $k$ and thus present a quasi-exactly solvable model.

Keywords: quasi-exactly solvable system, exactly solvable system.

PACS: 03.65.Db;03.65.Fd; 03.65.Ge

Received: 08.05.2014

DOI: 10.4213/tmf8707


 English version:
Theoretical and Mathematical Physics, 2015, 183:2, 730–736

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024