RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 1998 Volume 115, Number 3, Pages 323–348 (Mi tmf877)

This article is cited in 5 papers

Nonlinear $\sigma$-model in a curved space, gauge equivalence, and exact solutions of $(2+0)$-dimensional integrable equations

E. Sh. Gutshabasha, V. D. Lipovskii, S. S. Nikulichev

a V. A. Fock Institute of Physics, Saint-Petersburg State University

Abstract: We propose a nonlinear $\sigma$-model in a curved space as a general integrable elliptic model. We construct its exact solutions and obtain energy estimates near the critical point. We consider the Pohlmeyer transformation in Euclidean space and investigate the gauge equivalence conditions for a broad class of elliptic equations. We develop the inverse scattering transform method for the $\operatorname {sh}$-Gordon equation and evaluate its exact and asymptotic solutions.

Received: 14.01.1998

DOI: 10.4213/tmf877


 English version:
Theoretical and Mathematical Physics, 1998, 115:3, 619–638

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024