RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2015 Volume 183, Number 2, Pages 312–328 (Mi tmf8784)

This article is cited in 9 papers

Generation of exactly solvable potentials of the $D$-dimensional position-dependent mass Schrödinger equation using the transformation method

H. Rajbongshia, N. N. Singhb

a Nalbari College, Nalbari, Assam, India
b Gauhati University, Guwahati, Assam, India

Abstract: We apply the extended transformation method to the constant-mass radial Schrödinger equation satisfied by a radially symmetric central potential in order to obtain exactly solvable quantum systems with a position-dependent mass in a space of arbitrary dimension in the nonrelativistic limit. The method consists of a coordinate transformation, a subsequent functional transformation, and a set of ansatzes for the mass function leading to the appearance of exactly solvable quantum systems with position-dependent masses. We also show that the Zhu–Kroemer ordering for the fitting parameter values is natural for systems with a radially symmetric mass function and a central potential. As an example, we apply the method to the Manning–Rosen potential and to the Morse potential with different choices of the mass functions. We also indicate an application of the method to the Hulthen potential.

Keywords: position-dependent mass, exact analytic solution, Manning–Rosen potential, Morse potential, extended transformation.

PACS: 03.65.-w, 03.65.Ge, 03.65.Fd

Received: 27.08.2014

DOI: 10.4213/tmf8784


 English version:
Theoretical and Mathematical Physics, 2015, 183:2, 715–729

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024