RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2015 Volume 182, Number 2, Pages 213–222 (Mi tmf8785)

This article is cited in 14 papers

Blowing up solutions of the modified Novikov–Veselov equation and minimal surfaces

I. A. Taimanovab

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
b Novosibirsk State University, Novosibirsk, Russia

Abstract: We propose a construction of blowup solutions of the modified Novikov–Veselov equation based on the Moutard transformation of the two-dimensional Dirac operators and on its geometric interpretation in terms of surface geometry. We consider an explicit example of such a solution constructed using the minimal Enneper surface.

Keywords: blowup solution, modified Novikov–Veselov equation, Moutard transformation, two-dimensional Dirac operator, Weierstrass representation of surfaces, minimal surface.

Received: 27.08.2014

DOI: 10.4213/tmf8785


 English version:
Theoretical and Mathematical Physics, 2015, 182:2, 173–181

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025