RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2015 Volume 183, Number 2, Pages 177–201 (Mi tmf8817)

This article is cited in 6 papers

Finite-dimensional representations of the elliptic modular double

S. È. Derkacheva, V. P. Spiridonovb

a St. Petersburg Department of V. A. Steklov Institute of Mathematics of the Russian Academy of Sciences
b Joint Institute for Nuclear Research, Laboratory of Theoretical Physics, Dubna, Moscow Oblast, Russia

Abstract: We investigate the kernel space of an integral operator $\mathrm M(g)$ depending on the "spin" $g$ and describing an elliptic Fourier transformation. The operator $\mathrm M(g)$ is an intertwiner for the elliptic modular double formed from a pair of Sklyanin algebras with the parameters $\eta$ and $\tau$, $\operatorname{Im}\tau>0$, $\operatorname{Im}\eta>0$. For two-dimensional lattices $g=n\eta+m\tau/2$ and $g=1/2+n\eta+m\tau/2$ with incommensurate $1,2\eta,\tau$ and integers $n,m>0$, the operator $\mathrm M(g)$ has a finite-dimensional kernel that consists of the products of theta functions with two different modular parameters and is invariant under the action of generators of the elliptic modular double.

Keywords: Yang–Baxter equation, elliptic modular double, elliptic hypergeometric function.

Received: 10.11.2014

DOI: 10.4213/tmf8817


 English version:
Theoretical and Mathematical Physics, 2015, 183:2, 597–618

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024