RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2015 Volume 183, Number 3, Pages 372–387 (Mi tmf8820)

This article is cited in 9 papers

Bäcklund transformations relating different Hamilton–Jacobi equations

A. P. Sozonov, A. V. Tsiganov

St. Petersburg State University, St. Petersburg, Russia

Abstract: We discuss one of the possible finite-dimensional analogues of the general Bäcklund transformation relating different partial differential equations. We show that different Hamilton–Jacobi equations can be obtained from the same Lax matrix. We consider Hénon–Heiles systems on the plane, Neumann and Chaplygin systems on the sphere, and two integrable systems with velocity-dependent potentials as examples.

Keywords: general Bäcklund transformation, Hamilton–Jacobi equation, separation of variables, Lax matrix.

PACS: 02.90.+p, 03.40.Kf

MSC: 58J72, 70H06

Received: 17.11.2014
Revised: 10.01.2015

DOI: 10.4213/tmf8820


 English version:
Theoretical and Mathematical Physics, 2015, 183:3, 768–781

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024