RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2015 Volume 184, Number 1, Pages 117–133 (Mi tmf8841)

This article is cited in 4 papers

Exactly solvable potentials and the bound-state solution of the position-dependent mass Schrödinger equation in $D$-dimensional space

H. Rajbongshi

Physics Department, Nalbari College, Nalbari, Assam, India

Abstract: We propose a transformation method using properties of classical orthogonal polynomials to construct exactly solvable potentials that provide bound-state solutions of Schrödinger equations with a position-dependent mass in $D$-dimensional space. The important feature of the method is that it favors the Zhu–Kroemer ordering of ambiguities for a radially symmetric mass function and potential. This is illustrated using hypergeometric polynomials and the associated Legendre polynomials.

Keywords: position-dependent mass, classical orthogonal polynomial, exactly solvable potential, extended transformation, Schrödinger equation.

PACS: 03.65.Ge, 03.65.Db, 03.65.-w

Received: 12.12.2014

DOI: 10.4213/tmf8841


 English version:
Theoretical and Mathematical Physics, 2015, 184:1, 996–1010

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024