RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2016 Volume 187, Number 1, Pages 39–57 (Mi tmf8950)

This article is cited in 7 papers

"Quantization" of an isomonodromic Hamiltonian Garnier system with two degrees of freedom

D. P. Novikova, B. I. Suleimanovb

a Omsk State Technical University, Omsk, Russia
b Institute of Mathematics with Computing Centre, RAS, Ufa, Russia

Abstract: We construct solutions of analogues of a time-dependent Schrödinger equation corresponding to an isomonodromic polynomial Hamiltonian of a Garnier system with two degrees of freedom. The solutions are determined by solutions of linear differential equations whose compatibility condition is the given Garnier system. With explicit substitutions, these solutions reduce to solutions of the Belavin–Polyakov–Zamolodchikov equations with four times and two spatial variables.

Keywords: Schrödinger equation, Hamiltonian, isomonodromic deformation, Garnier system, Belavin–Polyakov–Zamolodchikov equation, Painlevé equation.

Received: 22.04.2015
Revised: 24.06.2015

DOI: 10.4213/tmf8950


 English version:
Theoretical and Mathematical Physics, 2016, 187:1, 479–496

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024