RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2016 Volume 188, Number 3, Pages 416–428 (Mi tmf9035)

This article is cited in 4 papers

Soliton surfaces in the generalized symmetry approach

A. M. Grundlandab

a Centre de Recherches Mathématiques, Université de Montréal, Montréal, Canada
b Département de Mathématiques et d'Informatique Université du Québec à Trois-Rivières, Trois-Rivières, Canada

Abstract: We investigate some features of generalized symmetries of integrable systems aiming to obtain the Fokas–Gel'fand formula for the immersion of two-dimensional soliton surfaces in Lie algebras. We show that if there exists a common symmetry of the zero-curvature representation of an integrable partial differential equation and its linear spectral problem, then the Fokas–Gel'fand immersion formula is applicable in its original form. In the general case, we show that when the symmetry of the zero-curvature representation is not a symmetry of its linear spectral problem, then the immersion function of the two-dimensional surface is determined by an extended formula involving additional terms in the expression for the tangent vectors. We illustrate these results with examples including the elliptic ordinary differential equation and the $\mathbb{C}P^{N-1}$ sigma-model equation.

Keywords: integrable system, soliton surface, immersion formula, generalized symmetry.

PACS: 02.20Sv, 02.30Ik, 02.40Dr

MSC: 35Q53, 35Q58, 53A05

Received: 26.08.2015
Revised: 06.12.2015

DOI: 10.4213/tmf9035


 English version:
Theoretical and Mathematical Physics, 2016, 188:3, 1322–1333

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024