RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2016 Volume 188, Number 1, Pages 36–48 (Mi tmf9058)

This article is cited in 3 papers

Bound states of the Schrödinger operator of a system of three bosons on a lattice

S. N. Lakaev, A. R. Khalmukhamedov, A. M. Khalkhuzhaev

Samarkand State University, Samarkand, Uzbekistan

Abstract: We consider the Hamiltonian $H_\mu$ of a system of three identical quantum particles (bosons) moving on a $d$-dimensional lattice $\mathbb Z^d$, $d=1,2$, and coupled by an attractive pairwise contact potential $\mu<0$. We prove that the number of bound states of the corresponding Schrödinger operator $H_\mu(K)$, $K\in\mathbb T^d$, is finite and establish the location and structure of its essential spectrum. We show that the bound state decays exponentially at infinity and that the eigenvalue and the corresponding bound state as functions of the quasimomentum $K\in\mathbb T^d$ are regular.

Keywords: discrete Schrodinger operator, three-particle system, contact coupling, eigenvalue, bound state, essential spectrum, lattice.

Received: 28.09.2015

DOI: 10.4213/tmf9058


 English version:
Theoretical and Mathematical Physics, 2016, 188:1, 994–1005

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024