RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2016 Volume 187, Number 2, Pages 297–309 (Mi tmf9072)

This article is cited in 2 papers

Ideals generated by traces in the algebra of symplectic reflections $H_{1,\nu_1,\nu_2}(I_2(2m))$

S. E. Konsteinab, I. V. Tyutinac

a Tamm Theory Department, Lebedev Physical Institute, RAS, Moscow, Russia
b Al Farabi Science Research Institute for Experimental and Theoretical Physics, Kazakhstan National University, Almaty, Kazakhstan
c Tomsk State Pedagogical University, Tomsk, Russia

Abstract: The associative algebra of symplectic reflections $\mathcal H:=H_{1,\nu_1,\nu_2} (I_2(2m))$ based on the group generated by the root system $I_2(2m)$ depends on two parameters, $\nu_1$ and $\nu_2$. For each value of these parameters, the algebra admits an $m$-dimensional space of traces. A trace $\operatorname{tr}$ is said to be degenerate if the corresponding symmetric bilinear form $B_{\operatorname{tr}}(x,y)=\operatorname{tr}(xy)$ is degenerate. We find all values of the parameters $\nu_1$ and $\nu_2$ for which the space of traces contains degenerate traces and the algebra $\mathcal H$ consequently has a two-sided ideal. It turns out that a linear combination of degenerate traces is also a degenerate trace. For the $\nu_1$ and $\nu_2$ values corresponding to degenerate traces, we find the dimensions of the space of degenerate traces.

Keywords: algebra of symplectic reflections, ideal, trace, supertrace, Coxeter group, group algebra.

Received: 19.10.2015

DOI: 10.4213/tmf9072


 English version:
Theoretical and Mathematical Physics, 2016, 187:2, 706–717

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025