RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2016 Volume 189, Number 1, Pages 59–68 (Mi tmf9098)

This article is cited in 4 papers

An integral geometry lemma and its applications: The nonlocality of the Pavlov equation and a tomographic problem with opaque parabolic objects

P. G. Grinevichabc, P. M. Santinide

a Landau Institute for Theoretical Physics, Chernogolovka, Russia
b Lomonosov Moscow State University, Moscow, Russia
c Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Oblast, Russia
d Istituto Nazionale di Fisica Nucleare, Sezione di Roma, Roma, Italy
e Dipartimento di Fisica, Università di Roma "La Sapienza", Roma, Italy

Abstract: Written in the evolutionary form, the multidimensional integrable dispersionless equations, exactly like the soliton equations in $2{+}1$ dimensions, become nonlocal. In particular, the Pavlov equation is brought to the form $v_t=v_xv_y-\partial^{-1}_x\,\partial_y[v_y+v^2_x]$, where the formal integral $\partial^{-1}_x$ becomes the asymmetric integral $-\int_x^{\infty}dx'$. We show that this result could be guessed using an apparently new integral geometry lemma. It states that the integral of a sufficiently general smooth function $f(X,Y)$ over a parabola in the plane $(X,Y)$ can be expressed in terms of the integrals of $f(X,Y)$ over straight lines not intersecting the parabola. We expect that this result can have applications in two-dimensional linear tomography problems with an opaque parabolic obstacle.

Keywords: dispersionless partial differential equation, scattering transform, Cauchy problem, vector field, Pavlov equation, nonlocality, tomography with an obstacle.

DOI: 10.4213/tmf9098


 English version:
Theoretical and Mathematical Physics, 2016, 189:1, 1450–1458

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024