RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2016 Volume 189, Number 2, Pages 149–175 (Mi tmf9106)

This article is cited in 8 papers

Construction of eigenfunctions for a system of quantum minors of the monodromy matrix for an $SL(n,\mathbb C)$-invariant spin chain

P. A. Valinevicha, S. È. Derkachevb, P. P. Kulishb, E. M. Uvarovb

a Emperor Alexander I St. Petersburg State Transport University, St. Petersburg, Russia
b St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences, St. Petersburg, Russia

Abstract: We consider the problem of seeking the eigenvectors for a commuting family of quantum minors of the monodromy matrix for an $SL(n,\mathbb C)$-invariant inhomogeneous spin chain. The algebra generators and elements of the $L$-operator at each site of the chain are implemented as linear differential operators in the space of functions of $n(n{-}1)/2$ variables. In the general case, the representation of the $sl_n(\mathbb C)$ algebra at each site is infinite-dimensional and belongs to the principal unitary series. We solve this problem using a recursive procedure with respect to the rank $n$ of the algebra. We obtain explicit expressions for the eigenvalues and eigenvectors of the commuting family. We consider the particular cases $n=2$ and $n=3$ and also the limit case of the one-site chain in detail.

Keywords: Yang–Baxter equation, $R$-matrix, intertwining operator, Yangian, separation of variables.

Received: 04.12.2015

DOI: 10.4213/tmf9106


 English version:
Theoretical and Mathematical Physics, 2016, 189:2, 1529–1553

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025