RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2017 Volume 190, Number 2, Pages 344–353 (Mi tmf9112)

This article is cited in 2 papers

Field theory and anisotropy of a cubic ferromagnet near the Curie point

A. Kudlisab, A. I. Sokolova

a Saint Petersburg State University, St. Petersburg, Staryi Petergof, Russia
b St. Petersburg State University of Information Technologies, Mechanics and Optics, St. Petersburg, Russia

Abstract: It is known that critical fluctuations can change the effective anisotropy of a cubic ferromagnet near the Curie point. If the crystal undergoes a phase transition into the orthorhombic phase and the initial anisotropy is not too strong, then the effective anisotropy acquires the universal value $A^*=v^*/u^*$ at $T_{\mathrm c}$, where $u^*$ and $v^*$ are the coordinates of the cubic fixed point of the renormalization group equations in the scaling equation of state and expressions for nonlinear susceptibilities. Using the pseudo-$\epsilon$-expansion method, we find the numerical value of the anisotropy parameter $A$ at the critical point. Padé resummation of the six-loop pseudo-$\epsilon$-expansions for $u^*$, $v^*$, and $A^*$ leads to the estimate $A^*=0.13\pm0.01$, giving evidence that observation of anisotropic critical behavior of cubic ferromagnets in physical and computer experiments is entirely possible.

Keywords: cubic model, effective anisotropy, renormalization group, $\epsilon$-expansion, pseudo-$\epsilon$-expansion.

Received: 09.12.2015
Revised: 09.04.2016

DOI: 10.4213/tmf9112


 English version:
Theoretical and Mathematical Physics, 2017, 190:2, 295–302

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024