RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2017 Volume 191, Number 3, Pages 456–472 (Mi tmf9171)

This article is cited in 1 paper

Exact Laplace-type asymptotic formulas for the Bogoliubov Gaussian measure: The set of minimum points of the action functional

V. R. Fatalov

Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russia

Abstract: We prove a theorem on the exact asymptotic relations of large deviations of the Bogoliubov measure in the $L^p$ norm for $p=4,6,8,10$ with $p>p_0$, where $p_0=2+4\pi^2/\beta^2\omega^2$ is a threshold value, $\beta>0$ is the inverse temperature, and $\omega>0$ is the natural frequency of the harmonic oscillator. For the study, we use the Laplace method in function spaces for Gaussian measures.

Keywords: Bogoliubov measure, Laplace method in a Banach space, action functional, set of minimum points.

Received: 09.02.2016
Revised: 29.04.2016

DOI: 10.4213/tmf9171


 English version:
Theoretical and Mathematical Physics, 2017, 191:3, 870–885

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025