RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2016 Volume 189, Number 3, Pages 477–484 (Mi tmf9253)

Functional equation for the crossover in the model of one-dimensional Weierstrass random walks

Yu. G. Rudoia, O. A. Kotel'nikovab

a Peoples' Friendship University of Russia, Moscow, Russia
b Lomonosov Moscow State University, Moscow, Russia

Abstract: We consider the problem of one-dimensional symmetric diffusion in the framework of Markov random walks of the Weierstrass type using two-parameter scaling for the transition probability. We construct a solution for the characteristic Lyapunov function as a sum of regular (homogeneous) and singular (nonhomogeneous) solutions and find the conditions for the crossover from normal to anomalous diffusion.

Keywords: normal diffusion, anomalous diffusion, Markov process, fractal dimension, functional pressure, Weierstrass function.

Received: 18.07.2016
Revised: 01.08.2016

DOI: 10.4213/tmf9253


 English version:
Theoretical and Mathematical Physics, 2016, 189:3, 1818–1823

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024