RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2017 Volume 193, Number 2, Pages 356–366 (Mi tmf9255)

This article is cited in 3 papers

New information-entropic relations for Clebsch–Gordan coefficients

V. N. Chernegaa, O. V. Man'koab, V. I. Man'koac, Z. Seilovc

a Lebedev Physical Institute, RAS, Moscow, Russia
b Bauman Moscow State Technical University, Moscow, Russia
c Moscow Institute of Physics and Technology (State University), Dolgoprudny, Moscow Oblast, Russia

Abstract: Using properties of the Shannon and Tsallis entropies, we obtain new inequalities for the Clebsch–Gordan coefficients of the group $SU(2)$. For this, we use squares of the Clebsch–Gordan coefficients as probability distributions. The obtained relations are new characteristics of correlations in a quantum system of two spins. We also find new inequalities for Hahn polynomials and the hypergeometric functions ${}_3F_2$.

Keywords: information-entropic inequality, Clebsch–Gordan coefficient, Wigner $3j$ symbol, Hahn polynomial, Shannon entropy, Tsallis entropy, subadditivity condition.

Received: 26.07.2016
Revised: 10.12.2016

DOI: 10.4213/tmf9255


 English version:
Theoretical and Mathematical Physics, 2017, 193:2, 1715–1724

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024