RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2017 Volume 192, Number 2, Pages 259–283 (Mi tmf9266)

This article is cited in 5 papers

Quantization of the Kadomtsev–Petviashvili equation

K. K. Kozlowskiabc, E. K. Sklyanind, A. Torriellie

a Université de Lyon, Lyon, France
b École Normale Supérieure de Lyon, Lyon, France
c Laboratoire de Physique, Université Claude Bernard Lyon 1, CNRS, Lyon, France
d Department of Mathematics, University of York, York, UK
e Department of Mathematics, University of Surrey, Guildford, UK

Abstract: We propose a quantization of the Kadomtsev–Petviashvili equation on a cylinder equivalent to an infinite system of nonrelativistic one-dimensional bosons with the masses $m=1,2,\dots$. The Hamiltonian is Galilei-invariant and includes the split and merge terms $\Psi^{\dagger}_{m_1}\Psi^{\dagger}_{m_2} \Psi_{m_1+m_2}$ and $\Psi^{\dagger}_{m_1+m_2}\Psi_{m_1}\Psi_{m_2}$ for all combinations of particles with masses $m_1$, $m_2$, and $m_1+m_2$ for a special choice of coupling constants. We construct the Bethe eigenfunctions for the model and verify the consistency of the coordinate Bethe ansatz and hence the quantum integrability of the model up to the mass $M=8$ sector.

Keywords: Kadomtsev–Petviashvili equation, quantization, Bethe ansatz, integrable model.

Received: 30.08.2016
Revised: 25.09.2016

DOI: 10.4213/tmf9266


 English version:
Theoretical and Mathematical Physics, 2017, 192:2, 1162–1183

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025