RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2017 Volume 192, Number 2, Pages 307–321 (Mi tmf9299)

Regularization of Mickelsson generators for nonexceptional quantum groups

A. I. Mudrov

Mathematics Department, University of Leicester, United Kingdom

Abstract: Let $\mathfrak{g}'\subset\mathfrak{g}$ be a pair of Lie algebras of either symplectic or orthogonal infinitesimal endomorphisms of the complex vector spaces $\mathbb C^{N-2}\subset\mathbb C^N$ and $U_q(\mathfrak{g}')\subset U_q(\mathfrak{g})$ be a pair of quantum groups with a triangular decomposition $U_q(\mathfrak{g})=U_q(\mathfrak{g}_-)U_q(\mathfrak{g}_+) U_q(\mathfrak{h})$. Let $Z_q(\mathfrak{g},\mathfrak{g}')$ be the corresponding step algebra. We assume that its generators are rational trigonometric functions $\mathfrak{h}^*\to U_q(\mathfrak{g}_\pm)$. We describe their regularization such that the resulting generators do not vanish for any choice of the weight.

Keywords: Mickelson algebra, quantum group, regularization.

Received: 30.10.2016

DOI: 10.4213/tmf9299


 English version:
Theoretical and Mathematical Physics, 2017, 192:2, 1205–1217

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024