Abstract:
We propose a method for determining asymptotic solutions of stationary problems for pencils of differential (and pseudodifferential) operators whose symbol is a self-adjoint matrix. We show that in the case of constant multiplicity, the problem of constructing asymptotic solutions corresponding to a distinguished eigenvalue (called an effective Hamiltonian, term, or mode) reduces to studying objects related only to the determinant of the principal matrix symbol and the eigenvector corresponding to a given (numerical) value of this effective Hamiltonian. As an example, we show that stationary solutions can be effectively calculated in the problem of plasma motion in a tokamak.