Abstract:
We consider a planar evolution problem for perturbations of the ice cover by a dipole starting its uniform rectilinear horizontal motion in a column of an initially stationary fluid. Using asymptotic Fourier analysis, we show that at supercritical velocities, waves of two types form on the water–ice interface. We describe the process of establishing these waves during the dipole motion. We assume that the fluid is ideal and incompressible and its motion is potential. The ice cover is modeled by the Kirchhoff–Love plate.
Keywords:fluid under ice cover, dipole, establishing wave.