RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2018 Volume 194, Number 2, Pages 187–223 (Mi tmf9378)

This article is cited in 6 papers

Bogoliubov quasiaverages: Spontaneous symmetry breaking and the algebra of fluctuations

W. F. Wreszinskia, V. A. Zagrebnovbc

a Instituto de Física, Universidade de São Paulo, São Paulo, Brazil
b Département de Mathématiques,d'Aix-Marseille Université, Marseille, France
c Institut de Mathématiques de Marseille, Marseille, France

Abstract: We present arguments supporting the use of the Bogoliubov method of quasiaverages for quantum systems. First, we elucidate how it can be used to study phase transitions with spontaneous symmetry breaking (SSB). For this, we consider the example of Bose–Einstein condensation in continuous systems. Analysis of different types of generalized condensations shows that the only physically reliable quantities are those defined by Bogoliubov quasiaverages. In this connection, we also solve the Lieb–Seiringer–Yngvason problem. Second, using the scaled Bogoliubov method of quasiaverages and considering the example of a structural quantum phase transition, we examine a relation between SSB and critical quantum fluctuations. We show that the quasiaverages again provide a tool suitable for describing the algebra of critical quantum fluctuation operators in both the commutative and noncommutative cases.

Keywords: quasiaverages, generalized condensation, critical quantum fluctuations.

Received: 01.04.2017

DOI: 10.4213/tmf9378


 English version:
Theoretical and Mathematical Physics, 2018, 194:2, 157–188

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024