RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2018 Volume 194, Number 1, Pages 71–89 (Mi tmf9389)

This article is cited in 6 papers

Zubarev's nonequilibrium statistical operator method in the generalized statistics of multiparticle systems

P. A. Glushaka, B. B. Markivb, M. V. Tokarchuka

a Institute for Condensed Matter Physics, National Academy of Sciences of Ukraine, Lviv, Ukraine
b GlobalLogic Ukraine, Lviv, Ukraine

Abstract: We present a generalization of Zubarev's nonequilibrium statistical operator method based on the principle of maximum Renyi entropy. In the framework of this approach, we obtain transport equations for the basic set of parameters of the reduced description of nonequilibrium processes in a classical system of interacting particles using Liouville equations with fractional derivatives. For a classical systems of particles in a medium with a fractal structure, we obtain a non-Markovian diffusion equation with fractional spatial derivatives. For a concrete model of the frequency dependence of a memory function, we obtain generalized Kettano-type diffusion equation with the spatial and temporal fractality taken into account. We present a generalization of nonequilibrium thermofield dynamics in Zubarev's nonequilibrium statistical operator method in the framework of Renyi statistics.

Keywords: Renyi entropy, nonequilibrium statistical operator, generalized transport equation, diffusion equation.

Received: 25.04.2017
Revised: 19.05.2017

DOI: 10.4213/tmf9389


 English version:
Theoretical and Mathematical Physics, 2018, 194:1, 57–73

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024